Polarisierte Kristallspektren einiger Hexaharnstoffkomplexe bei tiefen Temperaturen

Teil II. Lumineszenz

K. H. HANSEN[†] und E. KOGLIN^{*}

Lehrstuhl für Theoretische Chemie der Universität Bonn, 5300 Bonn, Wegelerstraße 12

Eingegangen am 5. April/30. August 1971

Polarized Crystal Spectra of Some Hexa-Urea Complexes at Low Temperatures II. Luminescence

The luminescence spectra of the compounds $\operatorname{Cr} \operatorname{ur}_6 I_3$, $\operatorname{Cr} \operatorname{ur}_6^* I_3$ ($\operatorname{ur}^* = \operatorname{deuterated} \operatorname{urea}$), $\operatorname{Cr}^{3+} : \operatorname{M} \operatorname{ur}_6 I_3$ and $\operatorname{Cr}^{3+} : \operatorname{M} \operatorname{ur}_6(\operatorname{ClO}_4)_3$ (M:Al; Ga) are studied at temperatures of liquid N₂ and He. With the He-Ne-laser as excitation source, the 4T_2 -level will be excited. The splitting of the 2E -level will be discussed. It results in two zero-phonon transitions $E_{1/2} \rightarrow {}^4A_2$; $E_{3/2} \rightarrow {}^4A_2$. From isotope effect and a comparison with IR-data, the side bands can be assigned to the excited vibrations of the ground level 4A_2 . In mixed crystalls Cr^{3+} : Ga $\operatorname{ur}_6 I_3$ an important splitting of the chrom dublett at longer wavelengths would be observed.

Die Lumineszenzspektren der Verbindungen Crha₆J₃, Crha₆^{*}J₃ (ha^{*} = Deuteroharnstoff), Cr³⁺: Mha₆J₃ und Cr³⁺: Mha₆(ClO₄)₃ (M:Al, Ga) werden bei Stickstofftemperatur und der Temperatur des flüssigen Heliums untersucht. Die Anregung erfolgt über den ⁴T₂-Zustand. Die Aufspaltung des ²E-Zustandes wird anhand der beiden Null-Null-Übergänge $E_{1/2} \rightarrow {}^{4}A_2$, $E_{3/2} \rightarrow {}^{4}A_2$ (Chrom-Dublett) diskutiert. Aus dem Isotopieeffekt und einem Vergleich mit IR-Messungen können die Begleitbanden als angeregte Schwingungen des Grundzustandes ${}^{4}A_2$ gedeutet werden. Im Mischkristall Cr³⁺: Gaha₆J₃ wird eine deutliche Aufspaltung der längerwelligen Chrom-Dublett-Bande beobachtet.

1. Einleitung

Bei 77° K wird im Lumineszenzspektrum aller bekannten Chromhexaharnstoff-Komplexe eine charakteristische Doppelstruktur des Phosphoreszenzübergangs ${}^{2}E \rightarrow {}^{4}A_{2}$ beobachtet [1–3]. Die Größe der Aufspaltung dieses Chrom-Dubletts liegt zwischen 70 cm⁻¹ und 100 cm⁻¹. Wird die Substanz auf Heliumtemperatur abgekühlt, so nimmt die Intensität der kürzerwelligen Chrom-Dublett-Bande stark ab, und auf der längerwelligen Seite des Dubletts wird eine weitere charakteristische Liniengruppe beobachtet. Als Erklärung für das Auftreten dieser Banden kommen die Aufspaltung des ${}^{2}E$ -Zustandes, vibronische Begleitbanden dieses Zustandes und Cr³⁺-Cr³⁺-Wechselwirkungen in Betracht [3]. Der Null-Null-Übergang der Fluoreszenz ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ ist ebenfalls an dieser Stelle zu vermuten.

Als Beitrag zur Lösung dieser Probleme haben wir unsere Lumineszenzuntersuchungen [4] ausgedehnt:

Der Einfluß des deuterierten Harnstoffliganden auf Änderungen in den Schwingungsfrequenzen und den Intensitäten wird untersucht. Das Cr³⁺-Ion

^{*} Dem Andenken an Herrn Prof. Dr. K. H. Hansen gewidmet.

wird in die Wirtkristalle Alha₆J₃, Gaha₆J₃, Alha₆(ClO₄)₃ und Gaha₆(ClO₄)₃ eingebaut. Die Lage des Null-Null-Übergangs der Fluoreszenz soll durch Verwendung anderer Liganden und Anionen bestimmt werden.

2. Experimentelles

Die Herstellung der verwendeten Kristalle wurde in Teil I [5] besprochen. Die untersuchten Mischkristalle lagen in folgender Cr^{3+} -Konzentration vor:

Cr^{3+} : Alha ₆ J ₃	23 Mol%,
$Cr^{3+}:Gaha_6J_3$	11 Mol%,
Cr^{3+} : Alha ₆ (ClO ₄) ₃	2,1 Mol%,
$Cr^{3+}:Gaha_6(ClO_4)_3$	2,8 Mol%.

Die Kristalle befanden sich in einem He-Kryostaten. Die Anregung der Spektren erfolgte mit dem spektral zerlegten Licht einer Hg-Lampe (HBO-200) bzw. mit einem 5 mW-He-Ne-Laser. Die Lumineszenzspektren wurden photoelektrisch (gekühlter RCA-7102-Multiplier) mit einem 3/4 meter Czerny-Turner Gittermonochromator von Spex aufgenommen.

3. Meßergebnisse

Aus dem Vergleich der Quantenausbeute als Funktion der Anregungswellenlänge hat sich der Anregungsweg ${}^{4}A_{2} \rightarrow {}^{4}T_{2} \rightarrow {}^{2}E$ als besonders günstig erwiesen. Die Anregung über die kürzerwelligen Banden ist energetisch weniger günstig.

Fig. 1. Phosphoreszenz des Crha₆J₃-Kristalls bei 77° K Kristallschliff $\uparrow \uparrow$ zu C₃, $\lambda_{Anreg.} = 6328 \text{ \AA} - 5 \text{ mW-He-Ne-Laser}$

Fig. 2. Phosphoreszenz des Crha₆J₃-Kristalls bei 4,2° K Kristallschliff $\uparrow\uparrow$ zu $C_3,$ $\lambda_{Anreg.}=6328$ Å-5 mW-He–Ne-Laser

Fig. 3. Phosphoreszenz der polykristallinen Chrom(III)-hexadeuteroharnstoff-Verbindung bei $4,2^{\circ}$ K $4,2^{\circ}$ K

Fig. 4. Phosphoreszenz des Cr^{3+} : Gaha₆J₃-Kristalls bei 4,2° K Kristallschliff $\perp zu C_3$ Fig. 5. Phosphoreszenz des Cr^{3+} : Gaha₆(ClO₄)₃-Kristalls bei 4,2° K Kristallschliff $\uparrow \uparrow zu C_3$

Die Fig. 1, 2 und 3 zeigen die Phosphoreszenzspektren des $Crha_6J_3$ -Kristalls und der polykristallinen $Crha_6^*J_3$ -Verbindung. Im Spektrum des $Crha_6J_3$ -Kristalls wird bei 4,2° K die kurzwellige Bande $P_1 = 14299$ cm⁻¹ nicht mehr beobachtet und die Begleitbande $P_5 = 13994$ cm⁻¹ ist bei dieser Temperatur die intensivste Phosphoreszenzbande.

In der deuterierten Crha^{*}₆ J₃-Verbindung wird das Chrom-Dublett um 9 cm^{-1} zum roten Spektralbereich verschoben. Bei 4,2° K wird die P_1 -Bande bei 14290 cm⁻¹ nicht gelöscht und die Intensität der Begleitbande $P_5 = 13997 \text{ cm}^{-1}$ ist nicht mehr intensiv.

Der sog. Deuteriumeffekt [6] als Zunahme der Phosphoreszenzintensität in der deuterierten Verbindung wird beobachtet. Die relativen Lumineszenzintensitäten betragen bei 4,2° K:

Crha₆J₃
$$P_2$$
-Bande bei 14229 cm⁻¹: $L_{rel} = 6,2 \ 10^{-11}$
Crha₆J₃ P_2 -Bande bei 14220 cm⁻¹: $L_{rel} = 1,1 \ 10^{-10}$

Fig. 4 zeigt das Phosphoreszenzspektrum des Mischkristalls Cr^{3+} : Gaha₆J₃. Hier wird eine Aufspaltung der Chrom-Dublett-Bande P_2 von 7 cm⁻¹ beobachtet. Im Cr^{3+} : Alha₆J₃-Kristall beträgt diese Aufspaltung 16 cm⁻¹. In den Perchloraten kann eine Aufspaltung nicht festgestellt werden. Gegenüber den Jodid-Verbindungen beobachtet man in den Perchloraten eine neue Bande, sie liegt im Cr^{3+} : Alha₆(ClO₄)₃-Kristall bei 14015 cm⁻¹ und im Cr^{3+} : Gaha₆(ClO₄)₃-Kristall bei 14019 cm⁻¹ (Fig. 5).

In den Tab. 1 und 2 sind die Wellenzahlen der untersuchten Verbindungen zusammengestellt.

4. Diskussion

a) Das Chrom-Dublett

Der angeregte ²E-Term spaltet unter Berücksichtigung der trigonalen Symmetrie D_3 und der Spin-Bahn-Wechselwirkung in die Zustände $E_{1/2}$ und $E_{3/2}$ auf. Im Konfigurations-Koordinaten-Modell [7] liegen dann die Minima der drei Potentialkurven $E_{1/2}$, $E_{3/2}$ und ⁴ A_2 bei annähernd gleichen Werten der Kernkoordinaten.

Das Chrom-Dublett könnte dann durch die Übergänge

$$P_1: E_{3/2}(n=0) \to {}^4A_2(m=0)$$
$$P_2: E_{1/2}(n=0) \to {}^4A_2(m=0)$$

erklärt werden. Da bei 77° K diese beiden Übergänge beobachtet werden (im Crha₆J₃-Kristall bei $P_1 = 14299$ cm⁻¹ und $P_2 = 14229$ cm⁻¹, Fig. 1) sollte man annehmen, daß die Anregung der Schwingungen im Grundzustand ⁴A₂ von den beiden Niveaus $E_{3/2}$ und $E_{1/2}$ erfolgt:

$$\begin{split} E_m(E_{3/2}) &= E(0,0)_1 \quad m\hbar\omega \\ E_m(E_{1/2}) &= E(0,0)_2 \quad m\hbar\omega \,. \end{split} \qquad m=0,\,1,\,2,\,\ldots$$

Da bei 4,2° K die P_1 -Bande verschwindet, müßten dann auch im Spektrum die Schwingungs-Begleitbanden $E_m(E_{3/2})$ mit m = 1, 2, ... nicht mehr auftreten. Ein

Bande	Crha ₆ J ₃	Crha ₆ J ₃	$Cr^{3+}:Alha_6J_3$	Cr ³⁺ :Gaha ₆ J ₃
1 P.	14299	14290	14306	14304
			14256	14265
$2P_{2}$	14229	14220	14230	14232
3	14203	11220	14214	14225
4	14200	14192	1721)	17225
5	14187	14174		
6	14181	14176	14190	14191
7	14175	141/0	14170	14191
8	14169			
0	1/155		14163	14164
10	14133		14105	1/157
10	14140			14137
10	14137			14127
12	14129		14124	14157
13	14126	14114	14134	14121
14	14113	14114	14119	14103
15	14096		14102	
16	14091			(1050
$17 P_3$	14058	14054	14056	14058
18	14044		14042	14047
19 P_4	14034	14033	14031	14034
20	14010			
21	14006			
22 P_{5}	13994	13997	13995	13994
				13987
23 P ₆	13957	13962	13958	13957
24 P ₇	13915	13937	13920	13921
25	13880		13886	13885
26	13867		13871	
27	13837	13846	13839	13843
28	13830		13831	
29	13817		13818	13819
30	13794		13798	
31	13779		13781	
32	13759		13760	13761
33	13719		13715	13720
34 F.	13706	13779	13706	13706
35	13696	13734	13698	13699
36	13683	13700	13680	13683
37	13641		13639	13644
$38 F_{2}$	13608	13650	13607	13612
39	13601	13612		13606
40	13478		13473	13481
41 F.	13469	13473	13463	13471
42	12104	13227	13185	13196
	1.2194	13441	10100	101/0

Tabelle 1. Wellenzahlen (cm⁻¹) der Lumineszenzbanden der Chromhexaharnstoffjodid-Komplexe

Vergleich der Spektren bei 77° K und 4,2° K zeigt, daß bei 4,2° K außer der P_1 -Bande keine weiteren Banden verschwinden, d. h. es gibt keine vibronischen Linien von merklicher Intensität des Typs $E_m(E_{3/2}) = E(0,0)_1 - m\hbar\omega$.

Linien von merklicher Intensität des Typs $E_m(E_{3/2}) = E(0,0)_1 - m\hbar\omega$. Daraus könnte man schließen, daß die Potentialkurven $E_{3/2}$ und 4A_2 ihr Minimum bei nahezu gleichen Werten der Kernkoordinaten besitzen. Die im

	1	-
Bande	$\operatorname{Cr}^{3+}:\operatorname{Alha}_6(\operatorname{ClO}_4)_3$	$Cr^{3+}:Gaha_6(ClO_4)_3$
$1 P_1$	14 263	14 268
1	14204	14 197
$2 P_{2}$	14 186	14 184
3	14160	14156
4		
5	14136	14143
6		
7		
8		14120
9	14094	
10		
11		14089
12		
13		
14		
15	14058	14065
16		14045
O-O	14015	14019
17 P ₃	13 997	13998
18	13988	13986
·19 P ₄	13976	13974
20	13964	13966
21		
22 P ₅	13948	13950
23 P ₆	13912	13 909
24 P ₇	13875	13873

Tabelle 2. Wellenzahlen (cm⁻¹) der Phosphoreszenzbanden der Chromhexaharnstoffperchlorat-Komplexe

Lumineszenzspektrum beobachteten Schwingungsbanden sollten dann Begleitbanden der Null-Null-Linie $P_2: E_{1/2} \rightarrow {}^4A_2$ sein. Die im IR gemessene nichttotalsymmetrische Schwingung mit einer Frequenz von 127 cm⁻¹ spiegelt sich im Lumineszenzspektrum wieder, wenn man die Wellenzahldifferenzen der folgenden Banden gegen die Phosphoreszenzbande P_2 bildet (Tab. 4).

b) Isotopie-Effekte

Eine Betrachtung des Lumineszenzspektrums der deuterierten Crha⁶₆ J₃-Verbindung zeigt, daß alle Banden auf der langwelligen Seite der intensiven P_2 -Bande gemäß des Rayleighschen Satzes mit geringerer Frequenz auftreten (Tab. 3). Der Abstand der beiden (0,0)-Banden P_1 und P_2 ist unabhängig von der Deuterierung. Dies deutet darauf hin, daß es sich tatsächlich um die angegebene Aufspaltung des ²E-Zustandes in die Elektronenübergänge $E_{1/2}$ und $E_{3/2}$ handelt.

Ein Verständnis für die Intensitätszunahme der Phosphoreszenz liefert die Arbeit von Lin [8]. Nach dieser Theorie ist die Übergangswahrscheinlichkeit für einen strahlungslosen Prozeß proportional der Frequenz einer angeregten Schwingung $\omega_i(n)$ des Moleküls. Da $\omega_i(n) = \sqrt{k/m_i}$ ist, wird bei Vergrößerung der Masse im Liganden $\omega_i(n)$ und damit die strahlungslose Übergangswahr-

Bande	Crha ₆ J ₃	Crha [*] ₆ J ₃	Cr ³⁺ : Alha ₆ J ₃	Cr ³⁺ : Gaha ₆ J ₃
1	- 70	- 70	- 76	- 72
			- 26	- 33
$2 P_2$	0	0	0	0
3	26		16	8
4	29	28		
5	42			
6	48	44	40	41
7	54			
8	60			
9	74		67	68
10	81			75
11	92			85
12	100			
13	103		96	96
14	116	106	111	112
15	133		128	129
16	138			
17 P ₃	171	166	174	174
18	185		188	185
19 P ₄	195	187	199	199
20	219			
21	223			
22 P ₅	235	223	235	238
				245
23 P ₆	272	258	272	275
$24 P_7$	314	283	310	311
25	349		344	347
26	362		359	
27	392	374	391	390
28	399		399	
29	412		412	413
. 30	435		432	
31	450		449	
32	470		470	471
33	510		515	512
$34 F_1$	523	441	524	526
35	533	486	532	533
30	546	520	550	549
3/	588	670	591	588
38 F ₂	021	570	023	021
3Y 40	028	008	757	020
40 41 E	/51	747	131	/31
41 1'3 12	1025	/4/	1045	1037
+2 13	1155	773	1043	1037
4 2	1100			

Tabelle 3. Wellenzahldifferenz $\bar{v}_0 - \bar{v}_i = \Delta \bar{v} (\text{cm}^{-1})$

scheinlichkeit kleiner. Die bei den Cr(3)-Verbindungen den strahlungslosen Übergang beschreibende Konstante k_6 [9] wird durch den Deuteriumeffekt reduziert. Da die Quantenausbeute der Phosphoreszenz umgekehrt proportional zu dieser Konstante ist [10], bedeutet die Abnahme von k_6 eine Erhöhung der Intensität dieses Übergangs.

Bande	$\overline{v} (\mathrm{cm}^{-1})$	Zuordnung	
1 P	14 200	$(0.0) - E \rightarrow 44$	
$\frac{1}{2} \frac{1}{P_2}$	14229	$(0,0)_1 - E_{3/2} \rightarrow A_2$ $(0,0)_2 - E_{1/2} \rightarrow {}^4A_2$	
14	14113	· · / £ 1/2 2	
15	14096	$(0,0)_2 - 129$	
16	14091		
22 P ₅	13994	$(0,0)_2 - 2 \times 129 + 27$	
25	13880	$(0,0)_2 - 3 \times 129 + 38$	
32	13759	$(0,0)_2 - 4 \times 129 + 46$	

Tabelle 4. $Crha_6 J_3$; Bereich von 14300 cm⁻¹ bis 13700 cm⁻¹ (4,2° K)

c) Null-Null-Übergang der Fluoreszenz ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$

Da das Potentialminimum des ${}^{4}T_{2}$ -Terms bei den Verbindungen mit den Jodid-Anion oberhalb des ${}^{2}E$ -Terms liegt [11], kann mit einem Einfluß des (0,0)-Übergangs von ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ auf das Chrom-Dublett nicht gerechnet werden. Der Einfluß des (0,0)-Übergangs kann eine Rolle spielen, wenn der ${}^{4}T_{2}$ -Term unterhalb des ${}^{2}E$ -Terms liegt: z. B. bei der Crha₆(ClO₄)₃-Verbindung. Hier sollte eine zusätzliche Bande im Lumineszenzspektrum beobachtet werden.

In Fig. 5 erkennt man vor der P_3 -Bande eine neue schwache Lumineszenzbande. Der Abstand von der P_2 -Bande beträgt beim Cr^{3+} : Alha₆(ClO₄)₃-Kristall 171 cm⁻¹ und beim Cr^{3+} : Gaha₆(ClO₄)₃-Kristall 165 cm⁻¹ (Tab. 2). Bei den Chromhexaharnstoff-Komplexen zeigt sich, daß der Fluoreszenzübergang das Chrom-Dublett nicht beeinflußt.

Die von uns untersuchten Chromacetamid-Komplexe zeigen ein entsprechendes Bild. Im Lumineszenzspektrum der von uns weiter untersuchten Chromdimethylsufoxid-Komplexe scheint der Null-Null-Übergang der Fluoreszenz das Chrom-Dublett stark zu beeinflussen. Dies ermöglichte es uns nicht, hier eine eindeutige Angabe über die Lage des Chrom-Dubletts zu geben.

d) $Cr^{3+}-Cr^{3+}-Wechselwirkung$

Forster erwähnte erstmals die Wechselwirkung von Cr^{3+} -Ionen in Molekülverbindungen [12]. In der von ihm untersuchten Verbindung spaltet der Null-Null-Übergang der Phosphoreszenz um 33 cm⁻¹ auf. In den $\operatorname{Cr}(\operatorname{Ox})^{3-}$ -Verbindungen wird eine Aufspaltung von 3,1 cm⁻¹ beobachtet [13]. In der von uns untersuchten Cr-Hexaharnstoff-Verbindung kann eine deutliche Aufspaltung von 7 cm⁻¹ im Cr^{3+} : Gaha₆J₃-Kristall beobachtet werden (Fig. 4). Zur langwelligen Seite der P_5 -Bande (13994 cm⁻¹) kann eine zusätzliche Begleitbande (13987 cm⁻¹) im Abstand von 7 cm⁻¹ beobachtet werden. Rein phänomenologisch läßt sich dies durch die Aufspaltung des Grundzustandes $2 \times {}^{4}A_{2} \rightarrow {}^{4}A'_{2}$ und ${}^{4}A''_{2}$ deuten. Es werden die beiden Null-Null-Übergänge $P'_{2}: E_{1/2}(n=0) \rightarrow {}^{4}A''_{2}(m=0)$ beobachtet. Zu jedem dieser Null-Null-Übergänge gibt es eine vibronische Begleitbande in der nichttotalsymmetrischen Schwingung von 127 cm⁻¹. Der P'_{2} -Bande entspricht die vibronische Begleitbande $P_{5} = 13994 \operatorname{cm}^{-1}$: $E_{1/2}(n=0) \rightarrow {}^{4}A''_{2}(m=2)$ der P''_{2} -Bande die Begleitbande bei 13987 cm⁻¹: $E_{1/2}(n=0) \rightarrow {}^{4}A''_{2}(m=2)$.

224 K. H. Hansen[†] und E. Koglin: Polarisierte Kristallspektren von Hexaharnstoffkomplexen. II

Eine einfache Übertragung der beim Rubin entwickelten Theorie [14] auf die Komplexverbindungen ist nicht möglich, da z. B. der Abstand zwischen den Cr^{3+} -Paaren II. Ordnung im Rubin nur 2,8 Å beträgt, der Abstand zwischen den nächsten Cr^{3+} -Nachbarn im $Crha_6J_3$ -Kristall beträgt jedoch über 7 Å [15]. Forster und Mortensen sind der Ansicht, daß in den Komplex-Verbindungen die Liganden eine Art "Leitung" zwischen den Cr^{3+} -Ionen herstellen. Sie sprechen dann von Superaustausch-Wechselwirkung. Um jedoch nähere Angaben über die Aufspaltung machen zu können, sind Lumineszenzuntersuchungen mit verschiedenen Cr^{3+} -Konzentrationen erforderlich.

Literatur

- 1. Porter, G.B., Schläfer, H.L.: Ber. Bunsenges. physik. Chem. 68, 316 (1964).
- 2. Vierke, G., Hansen, K. H.: Z. physik. Chem. Neue Folge 59, 109 (1968).
- 3. Dingle, R.: J. chem. Physics 50, 1952 (1969).
- 4. Koglin, E.: Diplomarbeit Ffm. 1968.
- 5. Hansen, K. H., Schenk, H.J.: Theoret. chim. Acta (Berl.) (in Druck).
- 6. Wright, M.R., Frosch, R.P., Robinson, G.W.: J. chem. Physics 33, 934 (1960).
- 7. Fowler, W.B.: Physics of COLOR CENTERS. New York: Academic Press 1968.
- 8. Lin, S. H.: J. chem. Physics 44, 3759 (1966).
- 9. Forster, L.S.: Transition Metal Chemistry 5, 1 (1969).
- 10. Fleischauer, P. D., Fleischauer, P.: Chem. Reviews 70, 199 (1970).
- 11. Hansen, K. H., Vierke, G.: Theoret. chim. Acta (Berl.) 6, 272 (1966).
- 12. Forster, L.S., Courtois, M.: J. molecular Spectroscopy 18, 396 (1965).
- 13. Mortensen, O.S.: J. chem. Physics 47, 4215 (1967).
- 14. Kislink, P., Krupke, W.F.: J. appl. Physics 36, 1025 (1965).
- Linek, A., Siskova, J., Jensovsky, L.: Proc. 9th. Intern. Conf. Coord. Chemistry, St. Moritz, Sept. 5-9, 1966.

Dr. E. Koglin Zentrallabor für Chemische Analyse Kernforschungsanlage Jülich D-517 Jülich, Deutschland